sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(156, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([0,0,1]))
pari:[g,chi] = znchar(Mod(121,156))
χ156(49,⋅)
χ156(121,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(79,53,145) → (1,1,e(61))
a |
−1 | 1 | 5 | 7 | 11 | 17 | 19 | 23 | 25 | 29 | 31 | 35 |
χ156(121,a) |
1 | 1 | −1 | e(65) | e(61) | e(31) | e(65) | e(32) | 1 | e(32) | −1 | e(31) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)