Properties

Label 156.121
Modulus 156156
Conductor 1313
Order 66
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(156, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,1]))
 
pari: [g,chi] = znchar(Mod(121,156))
 

Basic properties

Modulus: 156156
Conductor: 1313
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 66
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ13(4,)\chi_{13}(4,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 156.q

χ156(49,)\chi_{156}(49,\cdot) χ156(121,)\chi_{156}(121,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: Q(ζ13)+\Q(\zeta_{13})^+

Values on generators

(79,53,145)(79,53,145)(1,1,e(16))(1,1,e\left(\frac{1}{6}\right))

First values

aa 1-111557711111717191923232525292931313535
χ156(121,a) \chi_{ 156 }(121, a) 11111-1e(56)e\left(\frac{5}{6}\right)e(16)e\left(\frac{1}{6}\right)e(13)e\left(\frac{1}{3}\right)e(56)e\left(\frac{5}{6}\right)e(23)e\left(\frac{2}{3}\right)11e(23)e\left(\frac{2}{3}\right)1-1e(13)e\left(\frac{1}{3}\right)
sage: chi.jacobi_sum(n)
 
χ156(121,a)   \chi_{ 156 }(121,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ156(121,))   \tau_{ a }( \chi_{ 156 }(121,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ156(121,),χ156(n,))   J(\chi_{ 156 }(121,·),\chi_{ 156 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ156(121,))  K(a,b,\chi_{ 156 }(121,·)) \; at   a,b=\; a,b = e.g. 1,2