Properties

Label 156.53
Modulus 156156
Conductor 33
Order 22
Real yes
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(156, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1,0]))
 
pari: [g,chi] = znchar(Mod(53,156))
 

Basic properties

Modulus: 156156
Conductor: 33
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ3(2,)\chi_{3}(2,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 156.d

χ156(53,)\chi_{156}(53,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(3)\Q(\sqrt{-3})

Values on generators

(79,53,145)(79,53,145)(1,1,1)(1,-1,1)

First values

aa 1-111557711111717191923232525292931313535
χ156(53,a) \chi_{ 156 }(53, a) 1-1111-1111-11-1111-1111-1111-1
sage: chi.jacobi_sum(n)
 
χ156(53,a)   \chi_{ 156 }(53,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ156(53,))   \tau_{ a }( \chi_{ 156 }(53,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ156(53,),χ156(n,))   J(\chi_{ 156 }(53,·),\chi_{ 156 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ156(53,))  K(a,b,\chi_{ 156 }(53,·)) \; at   a,b=\; a,b = e.g. 1,2