Properties

Label 1575.694
Modulus 15751575
Conductor 2525
Order 1010
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,9,0]))
 
pari: [g,chi] = znchar(Mod(694,1575))
 

Basic properties

Modulus: 15751575
Conductor: 2525
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1010
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ25(19,)\chi_{25}(19,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1575.bx

χ1575(64,)\chi_{1575}(64,\cdot) χ1575(379,)\chi_{1575}(379,\cdot) χ1575(694,)\chi_{1575}(694,\cdot) χ1575(1009,)\chi_{1575}(1009,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: Q(ζ25)+\Q(\zeta_{25})^+

Values on generators

(1226,127,451)(1226,127,451)(1,e(910),1)(1,e\left(\frac{9}{10}\right),1)

First values

aa 1-1112244881111131316161717191922222323
χ1575(694,a) \chi_{ 1575 }(694, a) 1111e(910)e\left(\frac{9}{10}\right)e(45)e\left(\frac{4}{5}\right)e(710)e\left(\frac{7}{10}\right)e(25)e\left(\frac{2}{5}\right)e(110)e\left(\frac{1}{10}\right)e(35)e\left(\frac{3}{5}\right)e(710)e\left(\frac{7}{10}\right)e(15)e\left(\frac{1}{5}\right)e(310)e\left(\frac{3}{10}\right)e(910)e\left(\frac{9}{10}\right)
sage: chi.jacobi_sum(n)
 
χ1575(694,a)   \chi_{ 1575 }(694,a) \; at   a=\;a = e.g. 2