Properties

Label 1575.bg
Modulus 15751575
Conductor 3535
Order 66
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,4]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(424,1575))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 15751575
Conductor: 3535
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 66
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 35.j
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 6.6.300125.1

Characters in Galois orbit

Character 1-1 11 22 44 88 1111 1313 1616 1717 1919 2222 2323
χ1575(424,)\chi_{1575}(424,\cdot) 11 11 e(56)e\left(\frac{5}{6}\right) e(23)e\left(\frac{2}{3}\right) 1-1 e(23)e\left(\frac{2}{3}\right) 1-1 e(13)e\left(\frac{1}{3}\right) e(16)e\left(\frac{1}{6}\right) e(13)e\left(\frac{1}{3}\right) 1-1 e(56)e\left(\frac{5}{6}\right)
χ1575(1549,)\chi_{1575}(1549,\cdot) 11 11 e(16)e\left(\frac{1}{6}\right) e(13)e\left(\frac{1}{3}\right) 1-1 e(13)e\left(\frac{1}{3}\right) 1-1 e(23)e\left(\frac{2}{3}\right) e(56)e\left(\frac{5}{6}\right) e(23)e\left(\frac{2}{3}\right) 1-1 e(16)e\left(\frac{1}{6}\right)