Properties

Label 1587.1121
Modulus $1587$
Conductor $69$
Order $22$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1587, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([11,7]))
 
pari: [g,chi] = znchar(Mod(1121,1587))
 

Basic properties

Modulus: \(1587\)
Conductor: \(69\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(22\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{69}(17,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1587.g

\(\chi_{1587}(263,\cdot)\) \(\chi_{1587}(359,\cdot)\) \(\chi_{1587}(557,\cdot)\) \(\chi_{1587}(659,\cdot)\) \(\chi_{1587}(803,\cdot)\) \(\chi_{1587}(881,\cdot)\) \(\chi_{1587}(1100,\cdot)\) \(\chi_{1587}(1121,\cdot)\) \(\chi_{1587}(1253,\cdot)\) \(\chi_{1587}(1469,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: \(\Q(\zeta_{69})^+\)

Values on generators

\((530,1063)\) → \((-1,e\left(\frac{7}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 1587 }(1121, a) \) \(1\)\(1\)\(e\left(\frac{3}{22}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{1}{22}\right)\)\(e\left(\frac{9}{22}\right)\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{5}{11}\right)\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{6}{11}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1587 }(1121,a) \;\) at \(\;a = \) e.g. 2