Properties

Label 160.79
Modulus 160160
Conductor 4040
Order 22
Real yes
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,1,1]))
 
pari: [g,chi] = znchar(Mod(79,160))
 

Basic properties

Modulus: 160160
Conductor: 4040
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ40(19,)\chi_{40}(19,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 160.e

χ160(79,)\chi_{160}(79,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(10)\Q(\sqrt{-10})

Values on generators

(31,101,97)(31,101,97)(1,1,1)(-1,-1,-1)

First values

aa 1-1113377991111131317171919212123232727
χ160(79,a) \chi_{ 160 }(79, a) 1-1111-1111111111-1111-1111-1
sage: chi.jacobi_sum(n)
 
χ160(79,a)   \chi_{ 160 }(79,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ160(79,))   \tau_{ a }( \chi_{ 160 }(79,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ160(79,),χ160(n,))   J(\chi_{ 160 }(79,·),\chi_{ 160 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ160(79,))  K(a,b,\chi_{ 160 }(79,·)) \; at   a,b=\; a,b = e.g. 1,2