Properties

Label 1600.1311
Modulus 16001600
Conductor 200200
Order 1010
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1600, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([5,5,8]))
 
pari: [g,chi] = znchar(Mod(1311,1600))
 

Basic properties

Modulus: 16001600
Conductor: 200200
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1010
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ200(11,)\chi_{200}(11,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1600.bd

χ1600(31,)\chi_{1600}(31,\cdot) χ1600(671,)\chi_{1600}(671,\cdot) χ1600(991,)\chi_{1600}(991,\cdot) χ1600(1311,)\chi_{1600}(1311,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: 10.0.5000000000000000.1

Values on generators

(1151,901,577)(1151,901,577)(1,1,e(45))(-1,-1,e\left(\frac{4}{5}\right))

First values

aa 1-1113377991111131317171919212123232727
χ1600(1311,a) \chi_{ 1600 }(1311, a) 1-111e(35)e\left(\frac{3}{5}\right)1-1e(15)e\left(\frac{1}{5}\right)e(45)e\left(\frac{4}{5}\right)e(710)e\left(\frac{7}{10}\right)e(25)e\left(\frac{2}{5}\right)e(25)e\left(\frac{2}{5}\right)e(110)e\left(\frac{1}{10}\right)e(310)e\left(\frac{3}{10}\right)e(45)e\left(\frac{4}{5}\right)
sage: chi.jacobi_sum(n)
 
χ1600(1311,a)   \chi_{ 1600 }(1311,a) \; at   a=\;a = e.g. 2