from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(161, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([44,6]))
pari: [g,chi] = znchar(Mod(25,161))
Basic properties
Modulus: | \(161\) | |
Conductor: | \(161\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(33\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 161.m
\(\chi_{161}(2,\cdot)\) \(\chi_{161}(4,\cdot)\) \(\chi_{161}(9,\cdot)\) \(\chi_{161}(16,\cdot)\) \(\chi_{161}(18,\cdot)\) \(\chi_{161}(25,\cdot)\) \(\chi_{161}(32,\cdot)\) \(\chi_{161}(39,\cdot)\) \(\chi_{161}(58,\cdot)\) \(\chi_{161}(72,\cdot)\) \(\chi_{161}(81,\cdot)\) \(\chi_{161}(95,\cdot)\) \(\chi_{161}(100,\cdot)\) \(\chi_{161}(121,\cdot)\) \(\chi_{161}(123,\cdot)\) \(\chi_{161}(128,\cdot)\) \(\chi_{161}(142,\cdot)\) \(\chi_{161}(144,\cdot)\) \(\chi_{161}(151,\cdot)\) \(\chi_{161}(156,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{33})\) |
Fixed field: | 33.33.277966181338944111003326058293667039541136678070715028736001.1 |
Values on generators
\((24,120)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{1}{11}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 161 }(25, a) \) | \(1\) | \(1\) | \(e\left(\frac{17}{33}\right)\) | \(e\left(\frac{4}{33}\right)\) | \(e\left(\frac{1}{33}\right)\) | \(e\left(\frac{14}{33}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{8}{33}\right)\) | \(e\left(\frac{31}{33}\right)\) | \(e\left(\frac{16}{33}\right)\) | \(e\left(\frac{5}{33}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)