Properties

Label 1620.541
Modulus 16201620
Conductor 99
Order 33
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1620, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,4,0]))
 
pari: [g,chi] = znchar(Mod(541,1620))
 

Basic properties

Modulus: 16201620
Conductor: 99
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 33
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ9(7,)\chi_{9}(7,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1620.i

χ1620(541,)\chi_{1620}(541,\cdot) χ1620(1081,)\chi_{1620}(1081,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: Q(ζ9)+\Q(\zeta_{9})^+

Values on generators

(811,1541,1297)(811,1541,1297)(1,e(23),1)(1,e\left(\frac{2}{3}\right),1)

First values

aa 1-11177111113131717191923232929313137374141
χ1620(541,a) \chi_{ 1620 }(541, a) 1111e(23)e\left(\frac{2}{3}\right)e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)1111e(13)e\left(\frac{1}{3}\right)e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)11e(13)e\left(\frac{1}{3}\right)
sage: chi.jacobi_sum(n)
 
χ1620(541,a)   \chi_{ 1620 }(541,a) \; at   a=\;a = e.g. 2