Properties

Label 162240.131119
Modulus $162240$
Conductor $13520$
Order $52$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162240, base_ring=CyclotomicField(52))
 
M = H._module
 
chi = DirichletCharacter(H, M([26,39,0,26,32]))
 
pari: [g,chi] = znchar(Mod(131119,162240))
 

Basic properties

Modulus: \(162240\)
Conductor: \(13520\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(52\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{13520}(12819,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 162240.bag

\(\chi_{162240}(79,\cdot)\) \(\chi_{162240}(6319,\cdot)\) \(\chi_{162240}(12559,\cdot)\) \(\chi_{162240}(18799,\cdot)\) \(\chi_{162240}(25039,\cdot)\) \(\chi_{162240}(31279,\cdot)\) \(\chi_{162240}(43759,\cdot)\) \(\chi_{162240}(49999,\cdot)\) \(\chi_{162240}(56239,\cdot)\) \(\chi_{162240}(62479,\cdot)\) \(\chi_{162240}(68719,\cdot)\) \(\chi_{162240}(74959,\cdot)\) \(\chi_{162240}(81199,\cdot)\) \(\chi_{162240}(87439,\cdot)\) \(\chi_{162240}(93679,\cdot)\) \(\chi_{162240}(99919,\cdot)\) \(\chi_{162240}(106159,\cdot)\) \(\chi_{162240}(112399,\cdot)\) \(\chi_{162240}(124879,\cdot)\) \(\chi_{162240}(131119,\cdot)\) \(\chi_{162240}(137359,\cdot)\) \(\chi_{162240}(143599,\cdot)\) \(\chi_{162240}(149839,\cdot)\) \(\chi_{162240}(156079,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{52})$
Fixed field: Number field defined by a degree 52 polynomial

Values on generators

\((45631,70981,108161,64897,93121)\) → \((-1,-i,1,-1,e\left(\frac{8}{13}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 162240 }(131119, a) \) \(-1\)\(1\)\(e\left(\frac{9}{26}\right)\)\(e\left(\frac{33}{52}\right)\)\(e\left(\frac{9}{26}\right)\)\(-i\)\(-1\)\(e\left(\frac{45}{52}\right)\)\(e\left(\frac{11}{26}\right)\)\(e\left(\frac{9}{52}\right)\)\(e\left(\frac{21}{26}\right)\)\(e\left(\frac{43}{52}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 162240 }(131119,a) \;\) at \(\;a = \) e.g. 2