Properties

Label 162240.42599
Modulus $162240$
Conductor $81120$
Order $312$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162240, base_ring=CyclotomicField(312))
 
M = H._module
 
chi = DirichletCharacter(H, M([156,39,156,156,206]))
 
pari: [g,chi] = znchar(Mod(42599,162240))
 

Basic properties

Modulus: \(162240\)
Conductor: \(81120\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(312\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{81120}(73019,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 162240.bng

\(\chi_{162240}(119,\cdot)\) \(\chi_{162240}(839,\cdot)\) \(\chi_{162240}(4439,\cdot)\) \(\chi_{162240}(6359,\cdot)\) \(\chi_{162240}(10679,\cdot)\) \(\chi_{162240}(11399,\cdot)\) \(\chi_{162240}(12599,\cdot)\) \(\chi_{162240}(13319,\cdot)\) \(\chi_{162240}(17639,\cdot)\) \(\chi_{162240}(19559,\cdot)\) \(\chi_{162240}(23159,\cdot)\) \(\chi_{162240}(23879,\cdot)\) \(\chi_{162240}(25079,\cdot)\) \(\chi_{162240}(25799,\cdot)\) \(\chi_{162240}(29399,\cdot)\) \(\chi_{162240}(30119,\cdot)\) \(\chi_{162240}(31319,\cdot)\) \(\chi_{162240}(32039,\cdot)\) \(\chi_{162240}(35639,\cdot)\) \(\chi_{162240}(36359,\cdot)\) \(\chi_{162240}(37559,\cdot)\) \(\chi_{162240}(38279,\cdot)\) \(\chi_{162240}(41879,\cdot)\) \(\chi_{162240}(42599,\cdot)\) \(\chi_{162240}(43799,\cdot)\) \(\chi_{162240}(44519,\cdot)\) \(\chi_{162240}(48119,\cdot)\) \(\chi_{162240}(48839,\cdot)\) \(\chi_{162240}(50039,\cdot)\) \(\chi_{162240}(50759,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{312})$
Fixed field: Number field defined by a degree 312 polynomial (not computed)

Values on generators

\((45631,70981,108161,64897,93121)\) → \((-1,e\left(\frac{1}{8}\right),-1,-1,e\left(\frac{103}{156}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 162240 }(42599, a) \) \(-1\)\(1\)\(e\left(\frac{35}{39}\right)\)\(e\left(\frac{197}{312}\right)\)\(e\left(\frac{35}{39}\right)\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{89}{312}\right)\)\(e\left(\frac{19}{52}\right)\)\(e\left(\frac{101}{312}\right)\)\(e\left(\frac{29}{78}\right)\)\(e\left(\frac{55}{312}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 162240 }(42599,a) \;\) at \(\;a = \) e.g. 2