Properties

Label 162240.73
Modulus $162240$
Conductor $27040$
Order $104$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162240, base_ring=CyclotomicField(104))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,39,0,78,34]))
 
pari: [g,chi] = znchar(Mod(73,162240))
 

Basic properties

Modulus: \(162240\)
Conductor: \(27040\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(104\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{27040}(3453,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 162240.bdc

\(\chi_{162240}(73,\cdot)\) \(\chi_{162240}(2137,\cdot)\) \(\chi_{162240}(6313,\cdot)\) \(\chi_{162240}(8377,\cdot)\) \(\chi_{162240}(12553,\cdot)\) \(\chi_{162240}(14617,\cdot)\) \(\chi_{162240}(18793,\cdot)\) \(\chi_{162240}(25033,\cdot)\) \(\chi_{162240}(27097,\cdot)\) \(\chi_{162240}(31273,\cdot)\) \(\chi_{162240}(33337,\cdot)\) \(\chi_{162240}(37513,\cdot)\) \(\chi_{162240}(39577,\cdot)\) \(\chi_{162240}(43753,\cdot)\) \(\chi_{162240}(45817,\cdot)\) \(\chi_{162240}(49993,\cdot)\) \(\chi_{162240}(52057,\cdot)\) \(\chi_{162240}(56233,\cdot)\) \(\chi_{162240}(58297,\cdot)\) \(\chi_{162240}(62473,\cdot)\) \(\chi_{162240}(64537,\cdot)\) \(\chi_{162240}(70777,\cdot)\) \(\chi_{162240}(74953,\cdot)\) \(\chi_{162240}(77017,\cdot)\) \(\chi_{162240}(81193,\cdot)\) \(\chi_{162240}(83257,\cdot)\) \(\chi_{162240}(87433,\cdot)\) \(\chi_{162240}(89497,\cdot)\) \(\chi_{162240}(93673,\cdot)\) \(\chi_{162240}(95737,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{104})$
Fixed field: Number field defined by a degree 104 polynomial (not computed)

Values on generators

\((45631,70981,108161,64897,93121)\) → \((1,e\left(\frac{3}{8}\right),1,-i,e\left(\frac{17}{52}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 162240 }(73, a) \) \(1\)\(1\)\(e\left(\frac{25}{52}\right)\)\(e\left(\frac{57}{104}\right)\)\(e\left(\frac{51}{52}\right)\)\(e\left(\frac{3}{8}\right)\)\(1\)\(e\left(\frac{73}{104}\right)\)\(e\left(\frac{45}{52}\right)\)\(e\left(\frac{51}{104}\right)\)\(e\left(\frac{1}{26}\right)\)\(e\left(\frac{1}{104}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 162240 }(73,a) \;\) at \(\;a = \) e.g. 2