Properties

Label 16245.7609
Modulus 1624516245
Conductor 855855
Order 1818
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(16245, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([6,9,8]))
 
Copy content pari:[g,chi] = znchar(Mod(7609,16245))
 

Basic properties

Modulus: 1624516245
Conductor: 855855
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1818
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ855(769,)\chi_{855}(769,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 16245.cn

χ16245(5299,)\chi_{16245}(5299,\cdot) χ16245(6199,)\chi_{16245}(6199,\cdot) χ16245(7609,)\chi_{16245}(7609,\cdot) χ16245(9079,)\chi_{16245}(9079,\cdot) χ16245(14539,)\chi_{16245}(14539,\cdot) χ16245(14674,)\chi_{16245}(14674,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

(3611,12997,15886)(3611,12997,15886)(e(13),1,e(49))(e\left(\frac{1}{3}\right),-1,e\left(\frac{4}{9}\right))

First values

aa 1-11122447788111113131414161617172222
χ16245(7609,a) \chi_{ 16245 }(7609, a) 1111e(518)e\left(\frac{5}{18}\right)e(59)e\left(\frac{5}{9}\right)1-1e(56)e\left(\frac{5}{6}\right)e(23)e\left(\frac{2}{3}\right)e(718)e\left(\frac{7}{18}\right)e(79)e\left(\frac{7}{9}\right)e(19)e\left(\frac{1}{9}\right)e(1718)e\left(\frac{17}{18}\right)e(1718)e\left(\frac{17}{18}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ16245(7609,a)   \chi_{ 16245 }(7609,a) \; at   a=\;a = e.g. 2