Properties

Label 16245.7609
Modulus $16245$
Conductor $855$
Order $18$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16245, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,9,8]))
 
pari: [g,chi] = znchar(Mod(7609,16245))
 

Basic properties

Modulus: \(16245\)
Conductor: \(855\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{855}(769,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 16245.cn

\(\chi_{16245}(5299,\cdot)\) \(\chi_{16245}(6199,\cdot)\) \(\chi_{16245}(7609,\cdot)\) \(\chi_{16245}(9079,\cdot)\) \(\chi_{16245}(14539,\cdot)\) \(\chi_{16245}(14674,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((3611,12997,15886)\) → \((e\left(\frac{1}{3}\right),-1,e\left(\frac{4}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(22\)
\( \chi_{ 16245 }(7609, a) \) \(1\)\(1\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{5}{9}\right)\)\(-1\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{17}{18}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 16245 }(7609,a) \;\) at \(\;a = \) e.g. 2