from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(16245, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([8,9,10]))
chi.galois_orbit()
[g,chi] = znchar(Mod(6928,16245))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(16245\) | |
Conductor: | \(855\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(12\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 855.bv | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{12})\) |
Fixed field: | 12.12.515473239515768985392578125.1 |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(22\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{16245}(6928,\cdot)\) | \(1\) | \(1\) | \(i\) | \(-1\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{16245}(10177,\cdot)\) | \(1\) | \(1\) | \(-i\) | \(-1\) | \(e\left(\frac{11}{12}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{16245}(12928,\cdot)\) | \(1\) | \(1\) | \(i\) | \(-1\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{16245}(16177,\cdot)\) | \(1\) | \(1\) | \(-i\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) |