Properties

Label 163.66
Modulus 163163
Conductor 163163
Order 162162
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(163, base_ring=CyclotomicField(162))
 
M = H._module
 
chi = DirichletCharacter(H, M([149]))
 
pari: [g,chi] = znchar(Mod(66,163))
 

Basic properties

Modulus: 163163
Conductor: 163163
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 162162
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 163.j

χ163(2,)\chi_{163}(2,\cdot) χ163(3,)\chi_{163}(3,\cdot) χ163(7,)\chi_{163}(7,\cdot) χ163(11,)\chi_{163}(11,\cdot) χ163(12,)\chi_{163}(12,\cdot) χ163(18,)\chi_{163}(18,\cdot) χ163(19,)\chi_{163}(19,\cdot) χ163(20,)\chi_{163}(20,\cdot) χ163(29,)\chi_{163}(29,\cdot) χ163(32,)\chi_{163}(32,\cdot) χ163(42,)\chi_{163}(42,\cdot) χ163(44,)\chi_{163}(44,\cdot) χ163(45,)\chi_{163}(45,\cdot) χ163(50,)\chi_{163}(50,\cdot) χ163(52,)\chi_{163}(52,\cdot) χ163(63,)\chi_{163}(63,\cdot) χ163(66,)\chi_{163}(66,\cdot) χ163(67,)\chi_{163}(67,\cdot) χ163(68,)\chi_{163}(68,\cdot) χ163(70,)\chi_{163}(70,\cdot) χ163(72,)\chi_{163}(72,\cdot) χ163(73,)\chi_{163}(73,\cdot) χ163(75,)\chi_{163}(75,\cdot) χ163(76,)\chi_{163}(76,\cdot) χ163(79,)\chi_{163}(79,\cdot) χ163(80,)\chi_{163}(80,\cdot) χ163(82,)\chi_{163}(82,\cdot) χ163(89,)\chi_{163}(89,\cdot) χ163(92,)\chi_{163}(92,\cdot) χ163(94,)\chi_{163}(94,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ81)\Q(\zeta_{81})
Fixed field: Number field defined by a degree 162 polynomial (not computed)

Values on generators

22e(149162)e\left(\frac{149}{162}\right)

First values

aa 1-111223344556677889910101111
χ163(66,a) \chi_{ 163 }(66, a) 1-111e(149162)e\left(\frac{149}{162}\right)e(145162)e\left(\frac{145}{162}\right)e(6881)e\left(\frac{68}{81}\right)e(4354)e\left(\frac{43}{54}\right)e(2227)e\left(\frac{22}{27}\right)e(23162)e\left(\frac{23}{162}\right)e(4154)e\left(\frac{41}{54}\right)e(6481)e\left(\frac{64}{81}\right)e(5881)e\left(\frac{58}{81}\right)e(37162)e\left(\frac{37}{162}\right)
sage: chi.jacobi_sum(n)
 
χ163(66,a)   \chi_{ 163 }(66,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ163(66,))   \tau_{ a }( \chi_{ 163 }(66,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ163(66,),χ163(n,))   J(\chi_{ 163 }(66,·),\chi_{ 163 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ163(66,))  K(a,b,\chi_{ 163 }(66,·)) \; at   a,b=\; a,b = e.g. 1,2