Properties

Label 163.66
Modulus $163$
Conductor $163$
Order $162$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(163, base_ring=CyclotomicField(162))
 
M = H._module
 
chi = DirichletCharacter(H, M([149]))
 
pari: [g,chi] = znchar(Mod(66,163))
 

Basic properties

Modulus: \(163\)
Conductor: \(163\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(162\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 163.j

\(\chi_{163}(2,\cdot)\) \(\chi_{163}(3,\cdot)\) \(\chi_{163}(7,\cdot)\) \(\chi_{163}(11,\cdot)\) \(\chi_{163}(12,\cdot)\) \(\chi_{163}(18,\cdot)\) \(\chi_{163}(19,\cdot)\) \(\chi_{163}(20,\cdot)\) \(\chi_{163}(29,\cdot)\) \(\chi_{163}(32,\cdot)\) \(\chi_{163}(42,\cdot)\) \(\chi_{163}(44,\cdot)\) \(\chi_{163}(45,\cdot)\) \(\chi_{163}(50,\cdot)\) \(\chi_{163}(52,\cdot)\) \(\chi_{163}(63,\cdot)\) \(\chi_{163}(66,\cdot)\) \(\chi_{163}(67,\cdot)\) \(\chi_{163}(68,\cdot)\) \(\chi_{163}(70,\cdot)\) \(\chi_{163}(72,\cdot)\) \(\chi_{163}(73,\cdot)\) \(\chi_{163}(75,\cdot)\) \(\chi_{163}(76,\cdot)\) \(\chi_{163}(79,\cdot)\) \(\chi_{163}(80,\cdot)\) \(\chi_{163}(82,\cdot)\) \(\chi_{163}(89,\cdot)\) \(\chi_{163}(92,\cdot)\) \(\chi_{163}(94,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{81})$
Fixed field: Number field defined by a degree 162 polynomial (not computed)

Values on generators

\(2\) → \(e\left(\frac{149}{162}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 163 }(66, a) \) \(-1\)\(1\)\(e\left(\frac{149}{162}\right)\)\(e\left(\frac{145}{162}\right)\)\(e\left(\frac{68}{81}\right)\)\(e\left(\frac{43}{54}\right)\)\(e\left(\frac{22}{27}\right)\)\(e\left(\frac{23}{162}\right)\)\(e\left(\frac{41}{54}\right)\)\(e\left(\frac{64}{81}\right)\)\(e\left(\frac{58}{81}\right)\)\(e\left(\frac{37}{162}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 163 }(66,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 163 }(66,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 163 }(66,·),\chi_{ 163 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 163 }(66,·)) \;\) at \(\; a,b = \) e.g. 1,2