from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1632, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([0,10,8,1]))
pari: [g,chi] = znchar(Mod(1397,1632))
Basic properties
Modulus: | \(1632\) | |
Conductor: | \(1632\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(16\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1632.dw
\(\chi_{1632}(5,\cdot)\) \(\chi_{1632}(125,\cdot)\) \(\chi_{1632}(317,\cdot)\) \(\chi_{1632}(653,\cdot)\) \(\chi_{1632}(1253,\cdot)\) \(\chi_{1632}(1397,\cdot)\) \(\chi_{1632}(1421,\cdot)\) \(\chi_{1632}(1493,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{16})\) |
Fixed field: | 16.16.86609112753862292411929816663129369608192.2 |
Values on generators
\((511,613,545,1057)\) → \((1,e\left(\frac{5}{8}\right),-1,e\left(\frac{1}{16}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 1632 }(1397, a) \) | \(1\) | \(1\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(i\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) |
sage: chi.jacobi_sum(n)