Properties

Label 1632.1397
Modulus $1632$
Conductor $1632$
Order $16$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1632, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,10,8,1]))
 
pari: [g,chi] = znchar(Mod(1397,1632))
 

Basic properties

Modulus: \(1632\)
Conductor: \(1632\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1632.dw

\(\chi_{1632}(5,\cdot)\) \(\chi_{1632}(125,\cdot)\) \(\chi_{1632}(317,\cdot)\) \(\chi_{1632}(653,\cdot)\) \(\chi_{1632}(1253,\cdot)\) \(\chi_{1632}(1397,\cdot)\) \(\chi_{1632}(1421,\cdot)\) \(\chi_{1632}(1493,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.86609112753862292411929816663129369608192.2

Values on generators

\((511,613,545,1057)\) → \((1,e\left(\frac{5}{8}\right),-1,e\left(\frac{1}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 1632 }(1397, a) \) \(1\)\(1\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{5}{8}\right)\)\(i\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{3}{8}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1632 }(1397,a) \;\) at \(\;a = \) e.g. 2