sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1632, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([0,10,8,1]))
pari:[g,chi] = znchar(Mod(1397,1632))
Modulus: | 1632 | |
Conductor: | 1632 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 16 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1632(5,⋅)
χ1632(125,⋅)
χ1632(317,⋅)
χ1632(653,⋅)
χ1632(1253,⋅)
χ1632(1397,⋅)
χ1632(1421,⋅)
χ1632(1493,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(511,613,545,1057) → (1,e(85),−1,e(161))
a |
−1 | 1 | 5 | 7 | 11 | 13 | 19 | 23 | 25 | 29 | 31 | 35 |
χ1632(1397,a) |
1 | 1 | e(167) | e(1615) | e(161) | e(85) | i | e(163) | e(87) | e(163) | e(169) | e(83) |
sage:chi.jacobi_sum(n)