Properties

Label 16384.29
Modulus $16384$
Conductor $16384$
Order $4096$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16384, base_ring=CyclotomicField(4096))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1915]))
 
pari: [g,chi] = znchar(Mod(29,16384))
 

Basic properties

Modulus: \(16384\)
Conductor: \(16384\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(4096\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 16384.y

\(\chi_{16384}(5,\cdot)\) \(\chi_{16384}(13,\cdot)\) \(\chi_{16384}(21,\cdot)\) \(\chi_{16384}(29,\cdot)\) \(\chi_{16384}(37,\cdot)\) \(\chi_{16384}(45,\cdot)\) \(\chi_{16384}(53,\cdot)\) \(\chi_{16384}(61,\cdot)\) \(\chi_{16384}(69,\cdot)\) \(\chi_{16384}(77,\cdot)\) \(\chi_{16384}(85,\cdot)\) \(\chi_{16384}(93,\cdot)\) \(\chi_{16384}(101,\cdot)\) \(\chi_{16384}(109,\cdot)\) \(\chi_{16384}(117,\cdot)\) \(\chi_{16384}(125,\cdot)\) \(\chi_{16384}(133,\cdot)\) \(\chi_{16384}(141,\cdot)\) \(\chi_{16384}(149,\cdot)\) \(\chi_{16384}(157,\cdot)\) \(\chi_{16384}(165,\cdot)\) \(\chi_{16384}(173,\cdot)\) \(\chi_{16384}(181,\cdot)\) \(\chi_{16384}(189,\cdot)\) \(\chi_{16384}(197,\cdot)\) \(\chi_{16384}(205,\cdot)\) \(\chi_{16384}(213,\cdot)\) \(\chi_{16384}(221,\cdot)\) \(\chi_{16384}(229,\cdot)\) \(\chi_{16384}(237,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{4096})$
Fixed field: Number field defined by a degree 4096 polynomial (not computed)

Values on generators

\((16383,5)\) → \((1,e\left(\frac{1915}{4096}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 16384 }(29, a) \) \(1\)\(1\)\(e\left(\frac{1361}{4096}\right)\)\(e\left(\frac{1915}{4096}\right)\)\(e\left(\frac{135}{2048}\right)\)\(e\left(\frac{1361}{2048}\right)\)\(e\left(\frac{3415}{4096}\right)\)\(e\left(\frac{2261}{4096}\right)\)\(e\left(\frac{819}{1024}\right)\)\(e\left(\frac{637}{1024}\right)\)\(e\left(\frac{653}{4096}\right)\)\(e\left(\frac{1631}{4096}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 16384 }(29,a) \;\) at \(\;a = \) e.g. 2