Properties

Label 16384.945
Modulus $16384$
Conductor $4096$
Order $1024$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16384, base_ring=CyclotomicField(1024))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,173]))
 
pari: [g,chi] = znchar(Mod(945,16384))
 

Basic properties

Modulus: \(16384\)
Conductor: \(4096\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1024\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4096}(3861,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 16384.u

\(\chi_{16384}(17,\cdot)\) \(\chi_{16384}(49,\cdot)\) \(\chi_{16384}(81,\cdot)\) \(\chi_{16384}(113,\cdot)\) \(\chi_{16384}(145,\cdot)\) \(\chi_{16384}(177,\cdot)\) \(\chi_{16384}(209,\cdot)\) \(\chi_{16384}(241,\cdot)\) \(\chi_{16384}(273,\cdot)\) \(\chi_{16384}(305,\cdot)\) \(\chi_{16384}(337,\cdot)\) \(\chi_{16384}(369,\cdot)\) \(\chi_{16384}(401,\cdot)\) \(\chi_{16384}(433,\cdot)\) \(\chi_{16384}(465,\cdot)\) \(\chi_{16384}(497,\cdot)\) \(\chi_{16384}(529,\cdot)\) \(\chi_{16384}(561,\cdot)\) \(\chi_{16384}(593,\cdot)\) \(\chi_{16384}(625,\cdot)\) \(\chi_{16384}(657,\cdot)\) \(\chi_{16384}(689,\cdot)\) \(\chi_{16384}(721,\cdot)\) \(\chi_{16384}(753,\cdot)\) \(\chi_{16384}(785,\cdot)\) \(\chi_{16384}(817,\cdot)\) \(\chi_{16384}(849,\cdot)\) \(\chi_{16384}(881,\cdot)\) \(\chi_{16384}(913,\cdot)\) \(\chi_{16384}(945,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1024})$
Fixed field: Number field defined by a degree 1024 polynomial (not computed)

Values on generators

\((16383,5)\) → \((1,e\left(\frac{173}{1024}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 16384 }(945, a) \) \(1\)\(1\)\(e\left(\frac{39}{1024}\right)\)\(e\left(\frac{173}{1024}\right)\)\(e\left(\frac{321}{512}\right)\)\(e\left(\frac{39}{512}\right)\)\(e\left(\frac{1009}{1024}\right)\)\(e\left(\frac{131}{1024}\right)\)\(e\left(\frac{53}{256}\right)\)\(e\left(\frac{155}{256}\right)\)\(e\left(\frac{267}{1024}\right)\)\(e\left(\frac{681}{1024}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 16384 }(945,a) \;\) at \(\;a = \) e.g. 2