Properties

Label 1640.1399
Modulus $1640$
Conductor $820$
Order $20$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1640, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,0,10,11]))
 
pari: [g,chi] = znchar(Mod(1399,1640))
 

Basic properties

Modulus: \(1640\)
Conductor: \(820\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{820}(579,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1640.dh

\(\chi_{1640}(39,\cdot)\) \(\chi_{1640}(159,\cdot)\) \(\chi_{1640}(279,\cdot)\) \(\chi_{1640}(759,\cdot)\) \(\chi_{1640}(799,\cdot)\) \(\chi_{1640}(1279,\cdot)\) \(\chi_{1640}(1399,\cdot)\) \(\chi_{1640}(1519,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.0.44998002377408544344171356675696640000000000.1

Values on generators

\((1231,821,657,1441)\) → \((-1,1,-1,e\left(\frac{11}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 1640 }(1399, a) \) \(-1\)\(1\)\(i\)\(e\left(\frac{9}{20}\right)\)\(-1\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{4}{5}\right)\)\(-i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1640 }(1399,a) \;\) at \(\;a = \) e.g. 2