Properties

Label 1640.867
Modulus $1640$
Conductor $1640$
Order $40$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1640, base_ring=CyclotomicField(40))
 
M = H._module
 
chi = DirichletCharacter(H, M([20,20,10,1]))
 
pari: [g,chi] = znchar(Mod(867,1640))
 

Basic properties

Modulus: \(1640\)
Conductor: \(1640\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(40\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1640.dw

\(\chi_{1640}(67,\cdot)\) \(\chi_{1640}(147,\cdot)\) \(\chi_{1640}(227,\cdot)\) \(\chi_{1640}(347,\cdot)\) \(\chi_{1640}(403,\cdot)\) \(\chi_{1640}(427,\cdot)\) \(\chi_{1640}(507,\cdot)\) \(\chi_{1640}(563,\cdot)\) \(\chi_{1640}(603,\cdot)\) \(\chi_{1640}(643,\cdot)\) \(\chi_{1640}(867,\cdot)\) \(\chi_{1640}(1243,\cdot)\) \(\chi_{1640}(1283,\cdot)\) \(\chi_{1640}(1323,\cdot)\) \(\chi_{1640}(1347,\cdot)\) \(\chi_{1640}(1483,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{40})\)
Fixed field: 40.0.850100520307178141323742388002497873911873722563896105590771728372465664000000000000000000000000000000.1

Values on generators

\((1231,821,657,1441)\) → \((-1,-1,i,e\left(\frac{1}{40}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 1640 }(867, a) \) \(-1\)\(1\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{29}{40}\right)\)\(i\)\(e\left(\frac{3}{40}\right)\)\(e\left(\frac{1}{40}\right)\)\(e\left(\frac{3}{40}\right)\)\(e\left(\frac{29}{40}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{3}{8}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1640 }(867,a) \;\) at \(\;a = \) e.g. 2