Properties

Label 168.e
Modulus $168$
Conductor $168$
Order $2$
Real yes
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(168, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,1,1,1]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(83,168))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Kronecker symbol representation

sage: kronecker_character(-168)
 
pari: znchartokronecker(g,chi)
 

\(\displaystyle\left(\frac{-168}{\bullet}\right)\)

Basic properties

Modulus: \(168\)
Conductor: \(168\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{-42}) \)

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\)
\(\chi_{168}(83,\cdot)\) \(-1\) \(1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\) \(1\) \(1\) \(1\) \(1\) \(-1\)