Properties

Label 1680.fb
Modulus $1680$
Conductor $1680$
Order $12$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1680, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,9,6,6,8]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(179,1680))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1680\)
Conductor: \(1680\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.564055361099661312000000.1

Characters in Galois orbit

Character \(-1\) \(1\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{1680}(179,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(-i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(1\) \(-i\)
\(\chi_{1680}(779,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(1\) \(i\)
\(\chi_{1680}(1019,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(1\) \(i\)
\(\chi_{1680}(1619,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(1\) \(-i\)