Properties

Label 1682.1681
Modulus 16821682
Conductor 2929
Order 22
Real yes
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1]))
 
pari: [g,chi] = znchar(Mod(1681,1682))
 

Basic properties

Modulus: 16821682
Conductor: 2929
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ29(28,)\chi_{29}(28,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1682.b

χ1682(1681,)\chi_{1682}(1681,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(29)\Q(\sqrt{29})

Values on generators

8438431-1

First values

aa 1-11133557799111113131515171719192121
χ1682(1681,a) \chi_{ 1682 }(1681, a) 11111-11111111-1111-11-11-11-1
sage: chi.jacobi_sum(n)
 
χ1682(1681,a)   \chi_{ 1682 }(1681,a) \; at   a=\;a = e.g. 2