Properties

Label 169.139
Modulus 169169
Conductor 169169
Order 3939
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(78))
 
M = H._module
 
chi = DirichletCharacter(H, M([28]))
 
pari: [g,chi] = znchar(Mod(139,169))
 

Basic properties

Modulus: 169169
Conductor: 169169
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3939
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 169.i

χ169(3,)\chi_{169}(3,\cdot) χ169(9,)\chi_{169}(9,\cdot) χ169(16,)\chi_{169}(16,\cdot) χ169(29,)\chi_{169}(29,\cdot) χ169(35,)\chi_{169}(35,\cdot) χ169(42,)\chi_{169}(42,\cdot) χ169(48,)\chi_{169}(48,\cdot) χ169(55,)\chi_{169}(55,\cdot) χ169(61,)\chi_{169}(61,\cdot) χ169(68,)\chi_{169}(68,\cdot) χ169(74,)\chi_{169}(74,\cdot) χ169(81,)\chi_{169}(81,\cdot) χ169(87,)\chi_{169}(87,\cdot) χ169(94,)\chi_{169}(94,\cdot) χ169(100,)\chi_{169}(100,\cdot) χ169(107,)\chi_{169}(107,\cdot) χ169(113,)\chi_{169}(113,\cdot) χ169(120,)\chi_{169}(120,\cdot) χ169(126,)\chi_{169}(126,\cdot) χ169(133,)\chi_{169}(133,\cdot) χ169(139,)\chi_{169}(139,\cdot) χ169(152,)\chi_{169}(152,\cdot) χ169(159,)\chi_{169}(159,\cdot) χ169(165,)\chi_{169}(165,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ39)\Q(\zeta_{39})
Fixed field: Number field defined by a degree 39 polynomial

Values on generators

22e(1439)e\left(\frac{14}{39}\right)

First values

aa 1-111223344556677889910101111
χ169(139,a) \chi_{ 169 }(139, a) 1111e(1439)e\left(\frac{14}{39}\right)e(2039)e\left(\frac{20}{39}\right)e(2839)e\left(\frac{28}{39}\right)e(313)e\left(\frac{3}{13}\right)e(3439)e\left(\frac{34}{39}\right)e(1639)e\left(\frac{16}{39}\right)e(113)e\left(\frac{1}{13}\right)e(139)e\left(\frac{1}{39}\right)e(2339)e\left(\frac{23}{39}\right)e(3839)e\left(\frac{38}{39}\right)
sage: chi.jacobi_sum(n)
 
χ169(139,a)   \chi_{ 169 }(139,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ169(139,))   \tau_{ a }( \chi_{ 169 }(139,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ169(139,),χ169(n,))   J(\chi_{ 169 }(139,·),\chi_{ 169 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ169(139,))  K(a,b,\chi_{ 169 }(139,·)) \; at   a,b=\; a,b = e.g. 1,2