sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(169, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([28]))
pari:[g,chi] = znchar(Mod(139,169))
Modulus: | 169 | |
Conductor: | 169 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 39 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ169(3,⋅)
χ169(9,⋅)
χ169(16,⋅)
χ169(29,⋅)
χ169(35,⋅)
χ169(42,⋅)
χ169(48,⋅)
χ169(55,⋅)
χ169(61,⋅)
χ169(68,⋅)
χ169(74,⋅)
χ169(81,⋅)
χ169(87,⋅)
χ169(94,⋅)
χ169(100,⋅)
χ169(107,⋅)
χ169(113,⋅)
χ169(120,⋅)
χ169(126,⋅)
χ169(133,⋅)
χ169(139,⋅)
χ169(152,⋅)
χ169(159,⋅)
χ169(165,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(3914)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ169(139,a) |
1 | 1 | e(3914) | e(3920) | e(3928) | e(133) | e(3934) | e(3916) | e(131) | e(391) | e(3923) | e(3938) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)