from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(169, base_ring=CyclotomicField(26))
M = H._module
chi = DirichletCharacter(H, M([19]))
pari: [g,chi] = znchar(Mod(51,169))
Basic properties
Modulus: | \(169\) | |
Conductor: | \(169\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(26\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 169.h
\(\chi_{169}(12,\cdot)\) \(\chi_{169}(25,\cdot)\) \(\chi_{169}(38,\cdot)\) \(\chi_{169}(51,\cdot)\) \(\chi_{169}(64,\cdot)\) \(\chi_{169}(77,\cdot)\) \(\chi_{169}(90,\cdot)\) \(\chi_{169}(103,\cdot)\) \(\chi_{169}(116,\cdot)\) \(\chi_{169}(129,\cdot)\) \(\chi_{169}(142,\cdot)\) \(\chi_{169}(155,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{13})\) |
Fixed field: | 26.26.3830224792147131369362629348887201408953937846517364173.1 |
Values on generators
\(2\) → \(e\left(\frac{19}{26}\right)\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 169 }(51, a) \) | \(1\) | \(1\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{7}{26}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)