Properties

Label 1700.w
Modulus 17001700
Conductor 6868
Order 88
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1700, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([4,0,3])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(151,1700)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 17001700
Conductor: 6868
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 88
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 68.g
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ8)\Q(\zeta_{8})
Fixed field: 8.0.105046700288.1

Characters in Galois orbit

Character 1-1 11 33 77 99 1111 1313 1919 2121 2323 2727 2929
χ1700(151,)\chi_{1700}(151,\cdot) 1-1 11 e(78)e\left(\frac{7}{8}\right) e(58)e\left(\frac{5}{8}\right) i-i e(18)e\left(\frac{1}{8}\right) 1-1 i-i 1-1 e(18)e\left(\frac{1}{8}\right) e(58)e\left(\frac{5}{8}\right) e(78)e\left(\frac{7}{8}\right)
χ1700(451,)\chi_{1700}(451,\cdot) 1-1 11 e(58)e\left(\frac{5}{8}\right) e(78)e\left(\frac{7}{8}\right) ii e(38)e\left(\frac{3}{8}\right) 1-1 ii 1-1 e(38)e\left(\frac{3}{8}\right) e(78)e\left(\frac{7}{8}\right) e(58)e\left(\frac{5}{8}\right)
χ1700(1351,)\chi_{1700}(1351,\cdot) 1-1 11 e(18)e\left(\frac{1}{8}\right) e(38)e\left(\frac{3}{8}\right) ii e(78)e\left(\frac{7}{8}\right) 1-1 ii 1-1 e(78)e\left(\frac{7}{8}\right) e(38)e\left(\frac{3}{8}\right) e(18)e\left(\frac{1}{8}\right)
χ1700(1651,)\chi_{1700}(1651,\cdot) 1-1 11 e(38)e\left(\frac{3}{8}\right) e(18)e\left(\frac{1}{8}\right) i-i e(58)e\left(\frac{5}{8}\right) 1-1 i-i 1-1 e(58)e\left(\frac{5}{8}\right) e(18)e\left(\frac{1}{8}\right) e(38)e\left(\frac{3}{8}\right)