sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(176, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([0,5,18]))
pari:[g,chi] = znchar(Mod(149,176))
Modulus: | 176 | |
Conductor: | 176 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 20 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ176(13,⋅)
χ176(29,⋅)
χ176(61,⋅)
χ176(85,⋅)
χ176(101,⋅)
χ176(117,⋅)
χ176(149,⋅)
χ176(173,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(111,133,145) → (1,i,e(109))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 13 | 15 | 17 | 19 | 21 | 23 |
χ176(149,a) |
−1 | 1 | e(2019) | e(2017) | e(54) | e(109) | e(2013) | e(54) | e(101) | e(209) | −i | −1 |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)