Properties

Label 176.149
Modulus $176$
Conductor $176$
Order $20$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,5,18]))
 
pari: [g,chi] = znchar(Mod(149,176))
 

Basic properties

Modulus: \(176\)
Conductor: \(176\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 176.u

\(\chi_{176}(13,\cdot)\) \(\chi_{176}(29,\cdot)\) \(\chi_{176}(61,\cdot)\) \(\chi_{176}(85,\cdot)\) \(\chi_{176}(101,\cdot)\) \(\chi_{176}(117,\cdot)\) \(\chi_{176}(149,\cdot)\) \(\chi_{176}(173,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.0.200317132330035063121671003054276608.1

Values on generators

\((111,133,145)\) → \((1,i,e\left(\frac{9}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 176 }(149, a) \) \(-1\)\(1\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{9}{20}\right)\)\(-i\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 176 }(149,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 176 }(149,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 176 }(149,·),\chi_{ 176 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 176 }(149,·)) \;\) at \(\; a,b = \) e.g. 1,2