Properties

Label 176.17
Modulus 176176
Conductor 1111
Order 1010
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,9]))
 
pari: [g,chi] = znchar(Mod(17,176))
 

Basic properties

Modulus: 176176
Conductor: 1111
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1010
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ11(6,)\chi_{11}(6,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 176.n

χ176(17,)\chi_{176}(17,\cdot) χ176(129,)\chi_{176}(129,\cdot) χ176(145,)\chi_{176}(145,\cdot) χ176(161,)\chi_{176}(161,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: Q(ζ11)\Q(\zeta_{11})

Values on generators

(111,133,145)(111,133,145)(1,1,e(910))(1,1,e\left(\frac{9}{10}\right))

First values

aa 1-11133557799131315151717191921212323
χ176(17,a) \chi_{ 176 }(17, a) 1-111e(15)e\left(\frac{1}{5}\right)e(35)e\left(\frac{3}{5}\right)e(310)e\left(\frac{3}{10}\right)e(25)e\left(\frac{2}{5}\right)e(910)e\left(\frac{9}{10}\right)e(45)e\left(\frac{4}{5}\right)e(110)e\left(\frac{1}{10}\right)e(710)e\left(\frac{7}{10}\right)1-111
sage: chi.jacobi_sum(n)
 
χ176(17,a)   \chi_{ 176 }(17,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ176(17,))   \tau_{ a }( \chi_{ 176 }(17,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ176(17,),χ176(n,))   J(\chi_{ 176 }(17,·),\chi_{ 176 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ176(17,))  K(a,b,\chi_{ 176 }(17,·)) \; at   a,b=\; a,b = e.g. 1,2