Properties

Label 1785.2
Modulus $1785$
Conductor $1785$
Order $24$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1785, base_ring=CyclotomicField(24))
 
M = H._module
 
chi = DirichletCharacter(H, M([12,6,8,21]))
 
pari: [g,chi] = znchar(Mod(2,1785))
 

Basic properties

Modulus: \(1785\)
Conductor: \(1785\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(24\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1785.ei

\(\chi_{1785}(2,\cdot)\) \(\chi_{1785}(32,\cdot)\) \(\chi_{1785}(128,\cdot)\) \(\chi_{1785}(263,\cdot)\) \(\chi_{1785}(767,\cdot)\) \(\chi_{1785}(893,\cdot)\) \(\chi_{1785}(1052,\cdot)\) \(\chi_{1785}(1283,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

\((596,1072,766,1261)\) → \((-1,i,e\left(\frac{1}{3}\right),e\left(\frac{7}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(19\)\(22\)\(23\)\(26\)
\( \chi_{ 1785 }(2, a) \) \(1\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(1\)\(e\left(\frac{23}{24}\right)\)\(i\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{1}{24}\right)\)\(e\left(\frac{11}{12}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1785 }(2,a) \;\) at \(\;a = \) e.g. 2