Properties

Label 1785.2
Modulus 17851785
Conductor 17851785
Order 2424
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1785, base_ring=CyclotomicField(24))
 
M = H._module
 
chi = DirichletCharacter(H, M([12,6,8,21]))
 
pari: [g,chi] = znchar(Mod(2,1785))
 

Basic properties

Modulus: 17851785
Conductor: 17851785
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2424
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1785.ei

χ1785(2,)\chi_{1785}(2,\cdot) χ1785(32,)\chi_{1785}(32,\cdot) χ1785(128,)\chi_{1785}(128,\cdot) χ1785(263,)\chi_{1785}(263,\cdot) χ1785(767,)\chi_{1785}(767,\cdot) χ1785(893,)\chi_{1785}(893,\cdot) χ1785(1052,)\chi_{1785}(1052,\cdot) χ1785(1283,)\chi_{1785}(1283,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ24)\Q(\zeta_{24})
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

(596,1072,766,1261)(596,1072,766,1261)(1,i,e(13),e(78))(-1,i,e\left(\frac{1}{3}\right),e\left(\frac{7}{8}\right))

First values

aa 1-1112244881111131316161919222223232626
χ1785(2,a) \chi_{ 1785 }(2, a) 1111e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)11e(2324)e\left(\frac{23}{24}\right)iie(23)e\left(\frac{2}{3}\right)e(512)e\left(\frac{5}{12}\right)e(58)e\left(\frac{5}{8}\right)e(124)e\left(\frac{1}{24}\right)e(1112)e\left(\frac{11}{12}\right)
sage: chi.jacobi_sum(n)
 
χ1785(2,a)   \chi_{ 1785 }(2,a) \; at   a=\;a = e.g. 2