Properties

Label 1785.31
Modulus $1785$
Conductor $119$
Order $48$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1785, base_ring=CyclotomicField(48))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,8,27]))
 
pari: [g,chi] = znchar(Mod(31,1785))
 

Basic properties

Modulus: \(1785\)
Conductor: \(119\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(48\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{119}(31,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1785.fi

\(\chi_{1785}(31,\cdot)\) \(\chi_{1785}(61,\cdot)\) \(\chi_{1785}(241,\cdot)\) \(\chi_{1785}(346,\cdot)\) \(\chi_{1785}(481,\cdot)\) \(\chi_{1785}(556,\cdot)\) \(\chi_{1785}(691,\cdot)\) \(\chi_{1785}(796,\cdot)\) \(\chi_{1785}(976,\cdot)\) \(\chi_{1785}(1006,\cdot)\) \(\chi_{1785}(1081,\cdot)\) \(\chi_{1785}(1111,\cdot)\) \(\chi_{1785}(1321,\cdot)\) \(\chi_{1785}(1501,\cdot)\) \(\chi_{1785}(1711,\cdot)\) \(\chi_{1785}(1741,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Values on generators

\((596,1072,766,1261)\) → \((1,1,e\left(\frac{1}{6}\right),e\left(\frac{9}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(19\)\(22\)\(23\)\(26\)
\( \chi_{ 1785 }(31, a) \) \(1\)\(1\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{29}{48}\right)\)\(-i\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{17}{24}\right)\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{37}{48}\right)\)\(e\left(\frac{23}{24}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1785 }(31,a) \;\) at \(\;a = \) e.g. 2