Properties

Label 1785.46
Modulus $1785$
Conductor $119$
Order $48$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1785, base_ring=CyclotomicField(48))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,32,39]))
 
pari: [g,chi] = znchar(Mod(46,1785))
 

Basic properties

Modulus: \(1785\)
Conductor: \(119\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(48\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{119}(46,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1785.fe

\(\chi_{1785}(46,\cdot)\) \(\chi_{1785}(226,\cdot)\) \(\chi_{1785}(436,\cdot)\) \(\chi_{1785}(466,\cdot)\) \(\chi_{1785}(541,\cdot)\) \(\chi_{1785}(571,\cdot)\) \(\chi_{1785}(751,\cdot)\) \(\chi_{1785}(856,\cdot)\) \(\chi_{1785}(991,\cdot)\) \(\chi_{1785}(1066,\cdot)\) \(\chi_{1785}(1201,\cdot)\) \(\chi_{1785}(1306,\cdot)\) \(\chi_{1785}(1486,\cdot)\) \(\chi_{1785}(1516,\cdot)\) \(\chi_{1785}(1591,\cdot)\) \(\chi_{1785}(1621,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Values on generators

\((596,1072,766,1261)\) → \((1,1,e\left(\frac{2}{3}\right),e\left(\frac{13}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(19\)\(22\)\(23\)\(26\)
\( \chi_{ 1785 }(46, a) \) \(-1\)\(1\)\(e\left(\frac{17}{24}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{17}{48}\right)\)\(i\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{17}{24}\right)\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{25}{48}\right)\)\(e\left(\frac{23}{24}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1785 }(46,a) \;\) at \(\;a = \) e.g. 2