Properties

Label 1785.cz
Modulus $1785$
Conductor $35$
Order $12$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1785, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,2,0]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(52,1785))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1785\)
Conductor: \(35\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 35.k
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: \(\Q(\zeta_{35})^+\)

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(8\) \(11\) \(13\) \(16\) \(19\) \(22\) \(23\) \(26\)
\(\chi_{1785}(52,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-i\) \(e\left(\frac{2}{3}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{1785}(103,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\) \(-i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{1785}(817,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{1785}(1123,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\)