Properties

Label 1785.dg
Modulus 17851785
Conductor 17851785
Order 1212
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1785, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,9,2,9]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(38,1785))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 17851785
Conductor: 17851785
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: Number field defined by a degree 12 polynomial

Characters in Galois orbit

Character 1-1 11 22 44 88 1111 1313 1616 1919 2222 2323 2626
χ1785(38,)\chi_{1785}(38,\cdot) 1-1 11 e(112)e\left(\frac{1}{12}\right) e(16)e\left(\frac{1}{6}\right) ii e(512)e\left(\frac{5}{12}\right) i-i e(13)e\left(\frac{1}{3}\right) e(56)e\left(\frac{5}{6}\right) 1-1 e(13)e\left(\frac{1}{3}\right) e(56)e\left(\frac{5}{6}\right)
χ1785(47,)\chi_{1785}(47,\cdot) 1-1 11 e(1112)e\left(\frac{11}{12}\right) e(56)e\left(\frac{5}{6}\right) i-i e(712)e\left(\frac{7}{12}\right) ii e(23)e\left(\frac{2}{3}\right) e(16)e\left(\frac{1}{6}\right) 1-1 e(23)e\left(\frac{2}{3}\right) e(16)e\left(\frac{1}{6}\right)
χ1785(803,)\chi_{1785}(803,\cdot) 1-1 11 e(512)e\left(\frac{5}{12}\right) e(56)e\left(\frac{5}{6}\right) ii e(112)e\left(\frac{1}{12}\right) i-i e(23)e\left(\frac{2}{3}\right) e(16)e\left(\frac{1}{6}\right) 1-1 e(23)e\left(\frac{2}{3}\right) e(16)e\left(\frac{1}{6}\right)
χ1785(1067,)\chi_{1785}(1067,\cdot) 1-1 11 e(712)e\left(\frac{7}{12}\right) e(16)e\left(\frac{1}{6}\right) i-i e(1112)e\left(\frac{11}{12}\right) ii e(13)e\left(\frac{1}{3}\right) e(56)e\left(\frac{5}{6}\right) 1-1 e(13)e\left(\frac{1}{3}\right) e(56)e\left(\frac{5}{6}\right)