Properties

Label 180.169
Modulus 180180
Conductor 4545
Order 66
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(180, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,4,3]))
 
pari: [g,chi] = znchar(Mod(169,180))
 

Basic properties

Modulus: 180180
Conductor: 4545
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 66
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ45(34,)\chi_{45}(34,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 180.r

χ180(49,)\chi_{180}(49,\cdot) χ180(169,)\chi_{180}(169,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 6.6.820125.1

Values on generators

(91,101,37)(91,101,37)(1,e(23),1)(1,e\left(\frac{2}{3}\right),-1)

First values

aa 1-11177111113131717191923232929313137374141
χ180(169,a) \chi_{ 180 }(169, a) 1111e(16)e\left(\frac{1}{6}\right)e(23)e\left(\frac{2}{3}\right)e(56)e\left(\frac{5}{6}\right)1-111e(56)e\left(\frac{5}{6}\right)e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)1-1e(13)e\left(\frac{1}{3}\right)
sage: chi.jacobi_sum(n)
 
χ180(169,a)   \chi_{ 180 }(169,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ180(169,))   \tau_{ a }( \chi_{ 180 }(169,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ180(169,),χ180(n,))   J(\chi_{ 180 }(169,·),\chi_{ 180 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ180(169,))  K(a,b,\chi_{ 180 }(169,·)) \; at   a,b=\; a,b = e.g. 1,2