sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1800, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([0,15,10,18]))
pari:[g,chi] = znchar(Mod(1021,1800))
Modulus: | 1800 | |
Conductor: | 1800 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 30 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1800(61,⋅)
χ1800(421,⋅)
χ1800(661,⋅)
χ1800(781,⋅)
χ1800(1021,⋅)
χ1800(1141,⋅)
χ1800(1381,⋅)
χ1800(1741,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1351,901,1001,577) → (1,−1,e(31),e(53))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ1800(1021,a) |
1 | 1 | e(31) | e(3013) | e(3017) | e(54) | e(103) | e(154) | e(301) | e(157) | e(109) | e(151) |
sage:chi.jacobi_sum(n)