Properties

Label 1800.1049
Modulus $1800$
Conductor $45$
Order $6$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,5,3]))
 
pari: [g,chi] = znchar(Mod(1049,1800))
 

Basic properties

Modulus: \(1800\)
Conductor: \(45\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(6\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{45}(14,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1800.bo

\(\chi_{1800}(1049,\cdot)\) \(\chi_{1800}(1649,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(\zeta_3)\)
Fixed field: 6.0.2460375.1

Values on generators

\((1351,901,1001,577)\) → \((1,1,e\left(\frac{5}{6}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 1800 }(1049, a) \) \(-1\)\(1\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{6}\right)\)\(1\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(-1\)\(e\left(\frac{1}{6}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1800 }(1049,a) \;\) at \(\;a = \) e.g. 2