Properties

Label 1800.107
Modulus $1800$
Conductor $120$
Order $4$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([2,2,2,1]))
 
pari: [g,chi] = znchar(Mod(107,1800))
 

Basic properties

Modulus: \(1800\)
Conductor: \(120\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(4\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{120}(107,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1800.r

\(\chi_{1800}(107,\cdot)\) \(\chi_{1800}(1043,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.0.72000.2

Values on generators

\((1351,901,1001,577)\) → \((-1,-1,-1,i)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 1800 }(107, a) \) \(-1\)\(1\)\(-i\)\(-1\)\(i\)\(-i\)\(-1\)\(-i\)\(-1\)\(-1\)\(-i\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1800 }(107,a) \;\) at \(\;a = \) e.g. 2