from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1800, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([2,2,0,3]))
pari: [g,chi] = znchar(Mod(1243,1800))
Basic properties
Modulus: | \(1800\) | |
Conductor: | \(40\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(4\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{40}(3,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1800.w
\(\chi_{1800}(307,\cdot)\) \(\chi_{1800}(1243,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\mathbb{Q}(i)\) |
Fixed field: | 4.4.8000.1 |
Values on generators
\((1351,901,1001,577)\) → \((-1,-1,1,-i)\)
First values
\(a\) | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 1800 }(1243, a) \) | \(1\) | \(1\) | \(i\) | \(1\) | \(-i\) | \(-i\) | \(-1\) | \(-i\) | \(1\) | \(-1\) | \(i\) | \(1\) |
sage: chi.jacobi_sum(n)