Properties

Label 1800.599
Modulus 18001800
Conductor 180180
Order 66
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1800, base_ring=CyclotomicField(6)) M = H._module chi = DirichletCharacter(H, M([3,0,5,3]))
 
Copy content pari:[g,chi] = znchar(Mod(599,1800))
 

Basic properties

Modulus: 18001800
Conductor: 180180
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 66
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ180(59,)\chi_{180}(59,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1800.bc

χ1800(599,)\chi_{1800}(599,\cdot) χ1800(1199,)\chi_{1800}(1199,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 6.6.157464000.1

Values on generators

(1351,901,1001,577)(1351,901,1001,577)(1,1,e(56),1)(-1,1,e\left(\frac{5}{6}\right),-1)

First values

aa 1-11177111113131717191923232929313137374141
χ1800(599,a) \chi_{ 1800 }(599, a) 1111e(13)e\left(\frac{1}{3}\right)e(13)e\left(\frac{1}{3}\right)e(16)e\left(\frac{1}{6}\right)111-1e(16)e\left(\frac{1}{6}\right)e(56)e\left(\frac{5}{6}\right)e(16)e\left(\frac{1}{6}\right)1-1e(16)e\left(\frac{1}{6}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ1800(599,a)   \chi_{ 1800 }(599,a) \; at   a=\;a = e.g. 2