Properties

Label 1800.707
Modulus 18001800
Conductor 360360
Order 1212
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,6,10,3]))
 
pari: [g,chi] = znchar(Mod(707,1800))
 

Basic properties

Modulus: 18001800
Conductor: 360360
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ360(347,)\chi_{360}(347,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1800.cj

χ1800(443,)\chi_{1800}(443,\cdot) χ1800(707,)\chi_{1800}(707,\cdot) χ1800(1307,)\chi_{1800}(1307,\cdot) χ1800(1643,)\chi_{1800}(1643,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.0.198359290368000000000.1

Values on generators

(1351,901,1001,577)(1351,901,1001,577)(1,1,e(56),i)(-1,-1,e\left(\frac{5}{6}\right),i)

First values

aa 1-11177111113131717191923232929313137374141
χ1800(707,a) \chi_{ 1800 }(707, a) 1-111e(112)e\left(\frac{1}{12}\right)e(56)e\left(\frac{5}{6}\right)e(1112)e\left(\frac{11}{12}\right)i-i1-1e(512)e\left(\frac{5}{12}\right)e(56)e\left(\frac{5}{6}\right)e(16)e\left(\frac{1}{6}\right)i-ie(16)e\left(\frac{1}{6}\right)
sage: chi.jacobi_sum(n)
 
χ1800(707,a)   \chi_{ 1800 }(707,a) \; at   a=\;a = e.g. 2