Properties

Label 1800.797
Modulus $1800$
Conductor $1800$
Order $60$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,30,50,51]))
 
pari: [g,chi] = znchar(Mod(797,1800))
 

Basic properties

Modulus: \(1800\)
Conductor: \(1800\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1800.do

\(\chi_{1800}(77,\cdot)\) \(\chi_{1800}(173,\cdot)\) \(\chi_{1800}(317,\cdot)\) \(\chi_{1800}(437,\cdot)\) \(\chi_{1800}(533,\cdot)\) \(\chi_{1800}(653,\cdot)\) \(\chi_{1800}(677,\cdot)\) \(\chi_{1800}(797,\cdot)\) \(\chi_{1800}(1013,\cdot)\) \(\chi_{1800}(1037,\cdot)\) \(\chi_{1800}(1253,\cdot)\) \(\chi_{1800}(1373,\cdot)\) \(\chi_{1800}(1397,\cdot)\) \(\chi_{1800}(1517,\cdot)\) \(\chi_{1800}(1613,\cdot)\) \(\chi_{1800}(1733,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

\((1351,901,1001,577)\) → \((1,-1,e\left(\frac{5}{6}\right),e\left(\frac{17}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 1800 }(797, a) \) \(1\)\(1\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{19}{60}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{31}{60}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{17}{30}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1800 }(797,a) \;\) at \(\;a = \) e.g. 2