Properties

Label 1800.dp
Modulus $1800$
Conductor $900$
Order $60$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([30,0,50,33]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(23,1800))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1800\)
Conductor: \(900\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 900.bu
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{1800}(23,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{11}{30}\right)\)
\(\chi_{1800}(47,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{30}\right)\)
\(\chi_{1800}(167,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{23}{30}\right)\)
\(\chi_{1800}(263,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{19}{30}\right)\)
\(\chi_{1800}(383,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{23}{30}\right)\)
\(\chi_{1800}(527,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{30}\right)\)
\(\chi_{1800}(623,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{30}\right)\)
\(\chi_{1800}(767,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{13}{30}\right)\)
\(\chi_{1800}(887,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{29}{30}\right)\)
\(\chi_{1800}(983,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{13}{30}\right)\)
\(\chi_{1800}(1103,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{17}{30}\right)\)
\(\chi_{1800}(1127,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{30}\right)\)
\(\chi_{1800}(1247,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{17}{30}\right)\)
\(\chi_{1800}(1463,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{29}{30}\right)\)
\(\chi_{1800}(1487,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{19}{30}\right)\)
\(\chi_{1800}(1703,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{7}{30}\right)\)