Properties

Label 1805.1382
Modulus 18051805
Conductor 9595
Order 3636
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1805, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,14]))
 
pari: [g,chi] = znchar(Mod(1382,1805))
 

Basic properties

Modulus: 18051805
Conductor: 9595
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3636
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ95(52,)\chi_{95}(52,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1805.s

χ1805(127,)\chi_{1805}(127,\cdot) χ1805(262,)\chi_{1805}(262,\cdot) χ1805(307,)\chi_{1805}(307,\cdot) χ1805(333,)\chi_{1805}(333,\cdot) χ1805(477,)\chi_{1805}(477,\cdot) χ1805(488,)\chi_{1805}(488,\cdot) χ1805(623,)\chi_{1805}(623,\cdot) χ1805(668,)\chi_{1805}(668,\cdot) χ1805(838,)\chi_{1805}(838,\cdot) χ1805(1382,)\chi_{1805}(1382,\cdot) χ1805(1743,)\chi_{1805}(1743,\cdot) χ1805(1777,)\chi_{1805}(1777,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ36)\Q(\zeta_{36})
Fixed field: Q(ζ95)+\Q(\zeta_{95})^+

Values on generators

(362,1446)(362,1446)(i,e(718))(i,e\left(\frac{7}{18}\right))

First values

aa 1-11122334466778899111112121313
χ1805(1382,a) \chi_{ 1805 }(1382, a) 1111e(2336)e\left(\frac{23}{36}\right)e(2936)e\left(\frac{29}{36}\right)e(518)e\left(\frac{5}{18}\right)e(49)e\left(\frac{4}{9}\right)e(712)e\left(\frac{7}{12}\right)e(1112)e\left(\frac{11}{12}\right)e(1118)e\left(\frac{11}{18}\right)e(23)e\left(\frac{2}{3}\right)e(112)e\left(\frac{1}{12}\right)e(2536)e\left(\frac{25}{36}\right)
sage: chi.jacobi_sum(n)
 
χ1805(1382,a)   \chi_{ 1805 }(1382,a) \; at   a=\;a = e.g. 2