Properties

Label 1805.28
Modulus $1805$
Conductor $95$
Order $36$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1805, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([27,16]))
 
pari: [g,chi] = znchar(Mod(28,1805))
 

Basic properties

Modulus: \(1805\)
Conductor: \(95\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{95}(28,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1805.r

\(\chi_{1805}(28,\cdot)\) \(\chi_{1805}(62,\cdot)\) \(\chi_{1805}(423,\cdot)\) \(\chi_{1805}(967,\cdot)\) \(\chi_{1805}(1137,\cdot)\) \(\chi_{1805}(1182,\cdot)\) \(\chi_{1805}(1317,\cdot)\) \(\chi_{1805}(1328,\cdot)\) \(\chi_{1805}(1472,\cdot)\) \(\chi_{1805}(1498,\cdot)\) \(\chi_{1805}(1543,\cdot)\) \(\chi_{1805}(1678,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.0.619876750267203693326033178758188478035934269428253173828125.1

Values on generators

\((362,1446)\) → \((-i,e\left(\frac{4}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 1805 }(28, a) \) \(-1\)\(1\)\(e\left(\frac{7}{36}\right)\)\(e\left(\frac{1}{36}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{17}{36}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1805 }(28,a) \;\) at \(\;a = \) e.g. 2