sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1805, base_ring=CyclotomicField(342))
M = H._module
chi = DirichletCharacter(H, M([0,236]))
pari:[g,chi] = znchar(Mod(441,1805))
χ1805(6,⋅)
χ1805(16,⋅)
χ1805(36,⋅)
χ1805(61,⋅)
χ1805(66,⋅)
χ1805(81,⋅)
χ1805(101,⋅)
χ1805(111,⋅)
χ1805(131,⋅)
χ1805(156,⋅)
χ1805(161,⋅)
χ1805(176,⋅)
χ1805(196,⋅)
χ1805(206,⋅)
χ1805(226,⋅)
χ1805(251,⋅)
χ1805(256,⋅)
χ1805(271,⋅)
χ1805(291,⋅)
χ1805(301,⋅)
χ1805(321,⋅)
χ1805(346,⋅)
χ1805(351,⋅)
χ1805(366,⋅)
χ1805(386,⋅)
χ1805(396,⋅)
χ1805(416,⋅)
χ1805(441,⋅)
χ1805(446,⋅)
χ1805(461,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(362,1446) → (1,e(171118))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 |
χ1805(441,a) |
1 | 1 | e(171118) | e(171157) | e(17165) | e(171104) | e(5729) | e(574) | e(171143) | e(5722) | e(5717) | e(1715) |
sage:chi.jacobi_sum(n)