Properties

Label 1805.441
Modulus 18051805
Conductor 361361
Order 171171
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1805, base_ring=CyclotomicField(342)) M = H._module chi = DirichletCharacter(H, M([0,236]))
 
Copy content pari:[g,chi] = znchar(Mod(441,1805))
 

Basic properties

Modulus: 18051805
Conductor: 361361
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 171171
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ361(80,)\chi_{361}(80,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1805.bc

χ1805(6,)\chi_{1805}(6,\cdot) χ1805(16,)\chi_{1805}(16,\cdot) χ1805(36,)\chi_{1805}(36,\cdot) χ1805(61,)\chi_{1805}(61,\cdot) χ1805(66,)\chi_{1805}(66,\cdot) χ1805(81,)\chi_{1805}(81,\cdot) χ1805(101,)\chi_{1805}(101,\cdot) χ1805(111,)\chi_{1805}(111,\cdot) χ1805(131,)\chi_{1805}(131,\cdot) χ1805(156,)\chi_{1805}(156,\cdot) χ1805(161,)\chi_{1805}(161,\cdot) χ1805(176,)\chi_{1805}(176,\cdot) χ1805(196,)\chi_{1805}(196,\cdot) χ1805(206,)\chi_{1805}(206,\cdot) χ1805(226,)\chi_{1805}(226,\cdot) χ1805(251,)\chi_{1805}(251,\cdot) χ1805(256,)\chi_{1805}(256,\cdot) χ1805(271,)\chi_{1805}(271,\cdot) χ1805(291,)\chi_{1805}(291,\cdot) χ1805(301,)\chi_{1805}(301,\cdot) χ1805(321,)\chi_{1805}(321,\cdot) χ1805(346,)\chi_{1805}(346,\cdot) χ1805(351,)\chi_{1805}(351,\cdot) χ1805(366,)\chi_{1805}(366,\cdot) χ1805(386,)\chi_{1805}(386,\cdot) χ1805(396,)\chi_{1805}(396,\cdot) χ1805(416,)\chi_{1805}(416,\cdot) χ1805(441,)\chi_{1805}(441,\cdot) χ1805(446,)\chi_{1805}(446,\cdot) χ1805(461,)\chi_{1805}(461,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ171)\Q(\zeta_{171})
Fixed field: Number field defined by a degree 171 polynomial (not computed)

Values on generators

(362,1446)(362,1446)(1,e(118171))(1,e\left(\frac{118}{171}\right))

First values

aa 1-11122334466778899111112121313
χ1805(441,a) \chi_{ 1805 }(441, a) 1111e(118171)e\left(\frac{118}{171}\right)e(157171)e\left(\frac{157}{171}\right)e(65171)e\left(\frac{65}{171}\right)e(104171)e\left(\frac{104}{171}\right)e(2957)e\left(\frac{29}{57}\right)e(457)e\left(\frac{4}{57}\right)e(143171)e\left(\frac{143}{171}\right)e(2257)e\left(\frac{22}{57}\right)e(1757)e\left(\frac{17}{57}\right)e(5171)e\left(\frac{5}{171}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ1805(441,a)   \chi_{ 1805 }(441,a) \; at   a=\;a = e.g. 2