Properties

Label 1815.16
Modulus 18151815
Conductor 121121
Order 5555
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1815, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,4]))
 
pari: [g,chi] = znchar(Mod(16,1815))
 

Basic properties

Modulus: 18151815
Conductor: 121121
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 5555
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ121(16,)\chi_{121}(16,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1815.bk

χ1815(16,)\chi_{1815}(16,\cdot) χ1815(31,)\chi_{1815}(31,\cdot) χ1815(91,)\chi_{1815}(91,\cdot) χ1815(136,)\chi_{1815}(136,\cdot) χ1815(181,)\chi_{1815}(181,\cdot) χ1815(196,)\chi_{1815}(196,\cdot) χ1815(256,)\chi_{1815}(256,\cdot) χ1815(301,)\chi_{1815}(301,\cdot) χ1815(346,)\chi_{1815}(346,\cdot) χ1815(361,)\chi_{1815}(361,\cdot) χ1815(421,)\chi_{1815}(421,\cdot) χ1815(466,)\chi_{1815}(466,\cdot) χ1815(526,)\chi_{1815}(526,\cdot) χ1815(586,)\chi_{1815}(586,\cdot) χ1815(631,)\chi_{1815}(631,\cdot) χ1815(676,)\chi_{1815}(676,\cdot) χ1815(691,)\chi_{1815}(691,\cdot) χ1815(751,)\chi_{1815}(751,\cdot) χ1815(796,)\chi_{1815}(796,\cdot) χ1815(841,)\chi_{1815}(841,\cdot) χ1815(916,)\chi_{1815}(916,\cdot) χ1815(961,)\chi_{1815}(961,\cdot) χ1815(1006,)\chi_{1815}(1006,\cdot) χ1815(1021,)\chi_{1815}(1021,\cdot) χ1815(1081,)\chi_{1815}(1081,\cdot) χ1815(1126,)\chi_{1815}(1126,\cdot) χ1815(1171,)\chi_{1815}(1171,\cdot) χ1815(1186,)\chi_{1815}(1186,\cdot) χ1815(1246,)\chi_{1815}(1246,\cdot) χ1815(1336,)\chi_{1815}(1336,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ55)\Q(\zeta_{55})
Fixed field: Number field defined by a degree 55 polynomial

Values on generators

(1211,727,1696)(1211,727,1696)(1,1,e(255))(1,1,e\left(\frac{2}{55}\right))

First values

aa 1-11122447788131314141616171719192323
χ1815(16,a) \chi_{ 1815 }(16, a) 1111e(255)e\left(\frac{2}{55}\right)e(455)e\left(\frac{4}{55}\right)e(1455)e\left(\frac{14}{55}\right)e(655)e\left(\frac{6}{55}\right)e(3755)e\left(\frac{37}{55}\right)e(1655)e\left(\frac{16}{55}\right)e(855)e\left(\frac{8}{55}\right)e(4355)e\left(\frac{43}{55}\right)e(155)e\left(\frac{1}{55}\right)e(611)e\left(\frac{6}{11}\right)
sage: chi.jacobi_sum(n)
 
χ1815(16,a)   \chi_{ 1815 }(16,a) \; at   a=\;a = e.g. 2