from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1815, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([0,0,4]))
pari: [g,chi] = znchar(Mod(16,1815))
χ1815(16,⋅)
χ1815(31,⋅)
χ1815(91,⋅)
χ1815(136,⋅)
χ1815(181,⋅)
χ1815(196,⋅)
χ1815(256,⋅)
χ1815(301,⋅)
χ1815(346,⋅)
χ1815(361,⋅)
χ1815(421,⋅)
χ1815(466,⋅)
χ1815(526,⋅)
χ1815(586,⋅)
χ1815(631,⋅)
χ1815(676,⋅)
χ1815(691,⋅)
χ1815(751,⋅)
χ1815(796,⋅)
χ1815(841,⋅)
χ1815(916,⋅)
χ1815(961,⋅)
χ1815(1006,⋅)
χ1815(1021,⋅)
χ1815(1081,⋅)
χ1815(1126,⋅)
χ1815(1171,⋅)
χ1815(1186,⋅)
χ1815(1246,⋅)
χ1815(1336,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1211,727,1696) → (1,1,e(552))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 13 | 14 | 16 | 17 | 19 | 23 |
χ1815(16,a) |
1 | 1 | e(552) | e(554) | e(5514) | e(556) | e(5537) | e(5516) | e(558) | e(5543) | e(551) | e(116) |