Properties

Label 1815.19
Modulus 18151815
Conductor 605605
Order 110110
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1815, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,55,83]))
 
pari: [g,chi] = znchar(Mod(19,1815))
 

Basic properties

Modulus: 18151815
Conductor: 605605
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 110110
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ605(19,)\chi_{605}(19,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1815.br

χ1815(19,)\chi_{1815}(19,\cdot) χ1815(79,)\chi_{1815}(79,\cdot) χ1815(139,)\chi_{1815}(139,\cdot) χ1815(184,)\chi_{1815}(184,\cdot) χ1815(244,)\chi_{1815}(244,\cdot) χ1815(259,)\chi_{1815}(259,\cdot) χ1815(304,)\chi_{1815}(304,\cdot) χ1815(349,)\chi_{1815}(349,\cdot) χ1815(409,)\chi_{1815}(409,\cdot) χ1815(424,)\chi_{1815}(424,\cdot) χ1815(469,)\chi_{1815}(469,\cdot) χ1815(514,)\chi_{1815}(514,\cdot) χ1815(574,)\chi_{1815}(574,\cdot) χ1815(589,)\chi_{1815}(589,\cdot) χ1815(634,)\chi_{1815}(634,\cdot) χ1815(679,)\chi_{1815}(679,\cdot) χ1815(739,)\chi_{1815}(739,\cdot) χ1815(754,)\chi_{1815}(754,\cdot) χ1815(799,)\chi_{1815}(799,\cdot) χ1815(904,)\chi_{1815}(904,\cdot) χ1815(919,)\chi_{1815}(919,\cdot) χ1815(964,)\chi_{1815}(964,\cdot) χ1815(1009,)\chi_{1815}(1009,\cdot) χ1815(1069,)\chi_{1815}(1069,\cdot) χ1815(1084,)\chi_{1815}(1084,\cdot) χ1815(1174,)\chi_{1815}(1174,\cdot) χ1815(1234,)\chi_{1815}(1234,\cdot) χ1815(1249,)\chi_{1815}(1249,\cdot) χ1815(1294,)\chi_{1815}(1294,\cdot) χ1815(1339,)\chi_{1815}(1339,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ55)\Q(\zeta_{55})
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

(1211,727,1696)(1211,727,1696)(1,1,e(83110))(1,-1,e\left(\frac{83}{110}\right))

First values

aa 1-11122447788131314141616171719192323
χ1815(19,a) \chi_{ 1815 }(19, a) 1-111e(1455)e\left(\frac{14}{55}\right)e(2855)e\left(\frac{28}{55}\right)e(4355)e\left(\frac{43}{55}\right)e(4255)e\left(\frac{42}{55}\right)e(3955)e\left(\frac{39}{55}\right)e(255)e\left(\frac{2}{55}\right)e(155)e\left(\frac{1}{55}\right)e(2655)e\left(\frac{26}{55}\right)e(69110)e\left(\frac{69}{110}\right)e(722)e\left(\frac{7}{22}\right)
sage: chi.jacobi_sum(n)
 
χ1815(19,a)   \chi_{ 1815 }(19,a) \; at   a=\;a = e.g. 2