Properties

Label 1815.19
Modulus $1815$
Conductor $605$
Order $110$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1815, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,55,83]))
 
pari: [g,chi] = znchar(Mod(19,1815))
 

Basic properties

Modulus: \(1815\)
Conductor: \(605\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(110\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{605}(19,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1815.br

\(\chi_{1815}(19,\cdot)\) \(\chi_{1815}(79,\cdot)\) \(\chi_{1815}(139,\cdot)\) \(\chi_{1815}(184,\cdot)\) \(\chi_{1815}(244,\cdot)\) \(\chi_{1815}(259,\cdot)\) \(\chi_{1815}(304,\cdot)\) \(\chi_{1815}(349,\cdot)\) \(\chi_{1815}(409,\cdot)\) \(\chi_{1815}(424,\cdot)\) \(\chi_{1815}(469,\cdot)\) \(\chi_{1815}(514,\cdot)\) \(\chi_{1815}(574,\cdot)\) \(\chi_{1815}(589,\cdot)\) \(\chi_{1815}(634,\cdot)\) \(\chi_{1815}(679,\cdot)\) \(\chi_{1815}(739,\cdot)\) \(\chi_{1815}(754,\cdot)\) \(\chi_{1815}(799,\cdot)\) \(\chi_{1815}(904,\cdot)\) \(\chi_{1815}(919,\cdot)\) \(\chi_{1815}(964,\cdot)\) \(\chi_{1815}(1009,\cdot)\) \(\chi_{1815}(1069,\cdot)\) \(\chi_{1815}(1084,\cdot)\) \(\chi_{1815}(1174,\cdot)\) \(\chi_{1815}(1234,\cdot)\) \(\chi_{1815}(1249,\cdot)\) \(\chi_{1815}(1294,\cdot)\) \(\chi_{1815}(1339,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((1211,727,1696)\) → \((1,-1,e\left(\frac{83}{110}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(13\)\(14\)\(16\)\(17\)\(19\)\(23\)
\( \chi_{ 1815 }(19, a) \) \(-1\)\(1\)\(e\left(\frac{14}{55}\right)\)\(e\left(\frac{28}{55}\right)\)\(e\left(\frac{43}{55}\right)\)\(e\left(\frac{42}{55}\right)\)\(e\left(\frac{39}{55}\right)\)\(e\left(\frac{2}{55}\right)\)\(e\left(\frac{1}{55}\right)\)\(e\left(\frac{26}{55}\right)\)\(e\left(\frac{69}{110}\right)\)\(e\left(\frac{7}{22}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1815 }(19,a) \;\) at \(\;a = \) e.g. 2