from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1815, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([0,55,83]))
pari: [g,chi] = znchar(Mod(19,1815))
χ1815(19,⋅)
χ1815(79,⋅)
χ1815(139,⋅)
χ1815(184,⋅)
χ1815(244,⋅)
χ1815(259,⋅)
χ1815(304,⋅)
χ1815(349,⋅)
χ1815(409,⋅)
χ1815(424,⋅)
χ1815(469,⋅)
χ1815(514,⋅)
χ1815(574,⋅)
χ1815(589,⋅)
χ1815(634,⋅)
χ1815(679,⋅)
χ1815(739,⋅)
χ1815(754,⋅)
χ1815(799,⋅)
χ1815(904,⋅)
χ1815(919,⋅)
χ1815(964,⋅)
χ1815(1009,⋅)
χ1815(1069,⋅)
χ1815(1084,⋅)
χ1815(1174,⋅)
χ1815(1234,⋅)
χ1815(1249,⋅)
χ1815(1294,⋅)
χ1815(1339,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1211,727,1696) → (1,−1,e(11083))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 13 | 14 | 16 | 17 | 19 | 23 |
χ1815(19,a) |
−1 | 1 | e(5514) | e(5528) | e(5543) | e(5542) | e(5539) | e(552) | e(551) | e(5526) | e(11069) | e(227) |