Properties

Label 1815.223
Modulus $1815$
Conductor $605$
Order $220$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1815, base_ring=CyclotomicField(220))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,165,56]))
 
pari: [g,chi] = znchar(Mod(223,1815))
 

Basic properties

Modulus: \(1815\)
Conductor: \(605\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(220\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{605}(223,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1815.bs

\(\chi_{1815}(37,\cdot)\) \(\chi_{1815}(58,\cdot)\) \(\chi_{1815}(82,\cdot)\) \(\chi_{1815}(97,\cdot)\) \(\chi_{1815}(103,\cdot)\) \(\chi_{1815}(157,\cdot)\) \(\chi_{1815}(163,\cdot)\) \(\chi_{1815}(223,\cdot)\) \(\chi_{1815}(247,\cdot)\) \(\chi_{1815}(262,\cdot)\) \(\chi_{1815}(268,\cdot)\) \(\chi_{1815}(313,\cdot)\) \(\chi_{1815}(322,\cdot)\) \(\chi_{1815}(328,\cdot)\) \(\chi_{1815}(367,\cdot)\) \(\chi_{1815}(388,\cdot)\) \(\chi_{1815}(412,\cdot)\) \(\chi_{1815}(427,\cdot)\) \(\chi_{1815}(433,\cdot)\) \(\chi_{1815}(478,\cdot)\) \(\chi_{1815}(532,\cdot)\) \(\chi_{1815}(553,\cdot)\) \(\chi_{1815}(577,\cdot)\) \(\chi_{1815}(592,\cdot)\) \(\chi_{1815}(598,\cdot)\) \(\chi_{1815}(643,\cdot)\) \(\chi_{1815}(652,\cdot)\) \(\chi_{1815}(658,\cdot)\) \(\chi_{1815}(697,\cdot)\) \(\chi_{1815}(718,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{220})$
Fixed field: Number field defined by a degree 220 polynomial (not computed)

Values on generators

\((1211,727,1696)\) → \((1,-i,e\left(\frac{14}{55}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(13\)\(14\)\(16\)\(17\)\(19\)\(23\)
\( \chi_{ 1815 }(223, a) \) \(-1\)\(1\)\(e\left(\frac{1}{220}\right)\)\(e\left(\frac{1}{110}\right)\)\(e\left(\frac{117}{220}\right)\)\(e\left(\frac{3}{220}\right)\)\(e\left(\frac{211}{220}\right)\)\(e\left(\frac{59}{110}\right)\)\(e\left(\frac{1}{55}\right)\)\(e\left(\frac{49}{220}\right)\)\(e\left(\frac{69}{110}\right)\)\(e\left(\frac{3}{44}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1815 }(223,a) \;\) at \(\;a = \) e.g. 2