Properties

Label 1815.614
Modulus 18151815
Conductor 165165
Order 1010
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1815, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([5,5,6]))
 
pari: [g,chi] = znchar(Mod(614,1815))
 

Basic properties

Modulus: 18151815
Conductor: 165165
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1010
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ165(119,)\chi_{165}(119,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1815.o

χ1815(269,)\chi_{1815}(269,\cdot) χ1815(614,)\chi_{1815}(614,\cdot) χ1815(1049,)\chi_{1815}(1049,\cdot) χ1815(1334,)\chi_{1815}(1334,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: 10.0.162778775259375.1

Values on generators

(1211,727,1696)(1211,727,1696)(1,1,e(35))(-1,-1,e\left(\frac{3}{5}\right))

First values

aa 1-11122447788131314141616171719192323
χ1815(614,a) \chi_{ 1815 }(614, a) 1-111e(35)e\left(\frac{3}{5}\right)e(15)e\left(\frac{1}{5}\right)e(710)e\left(\frac{7}{10}\right)e(45)e\left(\frac{4}{5}\right)e(110)e\left(\frac{1}{10}\right)e(310)e\left(\frac{3}{10}\right)e(25)e\left(\frac{2}{5}\right)e(25)e\left(\frac{2}{5}\right)e(45)e\left(\frac{4}{5}\right)11
sage: chi.jacobi_sum(n)
 
χ1815(614,a)   \chi_{ 1815 }(614,a) \; at   a=\;a = e.g. 2