Properties

Label 1824.581
Modulus $1824$
Conductor $1824$
Order $24$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1824, base_ring=CyclotomicField(24))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,12,16]))
 
pari: [g,chi] = znchar(Mod(581,1824))
 

Basic properties

Modulus: \(1824\)
Conductor: \(1824\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(24\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1824.cw

\(\chi_{1824}(125,\cdot)\) \(\chi_{1824}(197,\cdot)\) \(\chi_{1824}(581,\cdot)\) \(\chi_{1824}(653,\cdot)\) \(\chi_{1824}(1037,\cdot)\) \(\chi_{1824}(1109,\cdot)\) \(\chi_{1824}(1493,\cdot)\) \(\chi_{1824}(1565,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

\((799,229,1217,97)\) → \((1,e\left(\frac{1}{8}\right),-1,e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 1824 }(581, a) \) \(-1\)\(1\)\(e\left(\frac{7}{24}\right)\)\(i\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{5}{24}\right)\)\(1\)\(e\left(\frac{13}{24}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1824 }(581,a) \;\) at \(\;a = \) e.g. 2